Coupled Growth and Division of Model Protocell Membranes

نویسندگان

  • Ting F. Zhu
  • Jack W. Szostak
چکیده

The generation of synthetic forms of cellular life requires solutions to the problem of how biological processes such as cyclic growth and division could emerge from purely physical and chemical systems. Small unilamellar fatty acid vesicles grow when fed with fatty acid micelles and can be forced to divide by extrusion, but this artificial division process results in significant loss of protocell contents during each division cycle. Here we describe a simple and efficient pathway for model protocell membrane growth and division. The growth of large multilamellar fatty acid vesicles fed with fatty acid micelles, in a solution where solute permeation across the membranes is slow, results in the transformation of initially spherical vesicles into long thread-like vesicles, a process driven by the transient imbalance between surface area and volume growth. Modest shear forces are then sufficient to cause the thread-like vesicles to divide into multiple daughter vesicles without loss of internal contents. In an environment of gentle shear, protocell growth and division are thus coupled processes. We show that model protocells can proceed through multiple cycles of reproduction. Encapsulated RNA molecules, representing a primitive genome, are distributed to the daughter vesicles. Our observations bring us closer to the laboratory synthesis of a complete protocell consisting of a self-replicating genome and a self-replicating membrane compartment. In addition, the robustness and simplicity of this pathway suggests that similar processes might have occurred under the prebiotic conditions of the early Earth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concentration-Driven Growth of Model Protocell Membranes

The first protocell membranes may have assembled from fatty acids and related single-chain lipids available in the prebiotic environment. Prior to the evolution of complex cellular machinery, spontaneous protocell membrane growth and division had to result from the intrinsic physicochemical properties of these molecules, in the context of specific environmental conditions. Depending on the natu...

متن کامل

The origins of cellular life.

Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially locali...

متن کامل

Photochemically driven redox chemistry induces protocell membrane pearling and division.

Prior to the evolution of complex biochemical machinery, the growth and division of simple primitive cells (protocells) must have been driven by environmental factors. We have previously demonstrated two pathways for fatty acid vesicle growth in which initially spherical vesicles grow into long filamentous vesicles; division is then mediated by fluid shear forces. Here we describe a different p...

متن کامل

A Simple Peptide Spontaneously Anchors Rna to Giant Lipidic Vesicles

In order to understand the transition from chemical evolution to Darwinian evolution, we are attempting to synthesize extremely simple artificial cells. I will present recent experimental progress towards the development of one of the key components of such a protocell, namely a self-replicating nucleic acid genome. INTRODUCTION, RESULTS AND DISCUSSION, CONCLUSION The earliest living cells must...

متن کامل

Engineering Artificial Cell Membranes

Growth and division are essential biological processes of cellular life. A crucial question concerning the origin of cellular life is how primitive cells (protocells) lacking complex biological machinery could grow and divide. To address this question, we first developed an effective method for preparing large monodisperse (uniform-sized) vesicles through a combination of extrusion and large-po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2009